Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 921
Filtrar
1.
Mol Nutr Food Res ; 68(8): e2300909, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602246

RESUMEN

SCOPE: In cases where breast milk is unavailable or inadequate, hydrolyzed infant formula is recommended as the primary alternative. The aim of this study is to assess and compare the allergenicity of two partially hydrolyzed whey-based formulas (PHF-Ws) using serum samples from patients with cow's milk allergy (CMA). METHODS AND RESULTS: LC-MS/MS technology is used to investigate the peptide distribution in both samples. The immunoreactivity of two PHF-Ws in 27 serum samples from 50 Chinese infants (02 years) with CMA is analyzed. The results demonstrate that even with a similar a degree of hydrolysis (DH), primary protein sources, peptides with molecular weights <5 kDa, and differences in the number of residual allergenic epitopes in the hydrolyzed peptide segments can lead to varying immune responses. CONCLUSION: The two PHF-Ws have notably high intolerance rates, exceeding 10% among infants with CMA. Therefore, suggesting that PHF-Ws may not be suitable for infants and children with CMA in China.


Asunto(s)
Alérgenos , Fórmulas Infantiles , Hipersensibilidad a la Leche , Proteína de Suero de Leche , Humanos , Hipersensibilidad a la Leche/inmunología , Lactante , China , Femenino , Alérgenos/inmunología , Masculino , Hidrólisis , Espectrometría de Masas en Tándem , Suero Lácteo/química , Animales
2.
Food Microbiol ; 121: 104521, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637083

RESUMEN

Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.


Asunto(s)
Queso , Lactobacillus delbrueckii , Lactobacillus helveticus , Suero Lácteo , Queso/microbiología , Microbiología de Alimentos , Proteína de Suero de Leche/análisis , Streptococcus thermophilus/genética
3.
Food Microbiol ; 121: 104525, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637087

RESUMEN

The lack of vitamin B12 in unprocessed plant-based foods can lead to health problems in strict vegetarians and vegans. The main aim of this study was to investigate the potential synergy of co-culturing Bifidobacterium animalis subsp. lactis and Propionibacterium freudenreichii in improving production of vitamin B12 and short-chain fatty acids in soy whey. Different strategies including mono-, sequential and simultaneous cultures were adopted. Growth, short-chain fatty acids and vitamin B12 were assessed throughout the fermentation while free amino acids, volatiles, and isoflavones were determined on the final day. P. freudenreichii monoculture grew well in soy whey, whereas B. lactis monoculture entered the death phase by day 4. Principal component analysis demonstrates that metabolic changes in both sequential cultures did not show drastic differences to those of P. freudenreichii monoculture. However, simultaneous culturing significantly improved vitamin B12, acetic acid and propionic acid contents (1.3 times, 5 times, 2.5 times, compared to the next highest treatment [sequential cultures]) in fermented soy whey relative to other culturing modes. Hence, co-culturing of P. freudenreichii and B. lactis would provide an alternative method to improve vitamin B12, acetic acid and propionic acid contents in fermented foods.


Asunto(s)
Bifidobacterium animalis , Propionibacterium freudenreichii , Propionatos , Propionibacterium freudenreichii/metabolismo , Bifidobacterium animalis/metabolismo , Suero Lácteo , Vitamina B 12/análisis , Vitamina B 12/metabolismo , Propionibacterium/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fermentación , Ácido Acético/metabolismo , Proteína de Suero de Leche/metabolismo , Vitaminas/metabolismo
4.
Food Res Int ; 184: 114261, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609238

RESUMEN

Our previous study indicated that whey protein hydrolysate (WPH) showed effective anti-fatigue properties, but its regulatory mechanism on recovery from exercise in mice is unclear. In the present study, we divided the mice into control, WP, and WPH groups and allowed them to rest for 1 h and 24 h after exercise, respectively. The changes in muscle metabolites of mice in the recovery period were investigated using metabolomics techniques. The results showed that the WPH group significantly up-regulated 94 muscle metabolites within 1 h of rest, which was 1.96 and 2.61 times more than the control and WP groups, respectively. In detail, significant decreases in TCA cycle intermediates, lipid metabolites, and carbohydrate metabolites were observed in the control group during exercise recovery. In contrast, administration with WP and WPH enriched more amino acid metabolites within 1 h of rest, which might provide a more comprehensive metabolic environment for muscle repair. Moreover, the WPH group remarkably stimulated the enhancement of lipid, carbohydrate, and vitamin metabolites in the recovery period which might provide raw materials and energy for anabolic reactions. The result of the western blot further demonstrated that WPH could promote muscle repair via activating the Sestrin2/Akt/mTOR/S6K signaling pathway within 1 h of rest. These findings deepen our understanding of the regulatory mechanisms by WPH to promote muscle recovery and may serve as a reference for comprehensive assessments of protein supplements on exercise.


Asunto(s)
Hidrolisados de Proteína , Suero Lácteo , Animales , Ratones , Proteína de Suero de Leche , Músculos , Carbohidratos , Lípidos
5.
Compr Rev Food Sci Food Saf ; 23(3): e13337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578124

RESUMEN

Whey protein hydrolysates are recognized for their substantial functional and biological properties. Their high digestibility and amino acid composition make them a valuable ingredient to hydrolyzed whey infant formulas, enhancing both product functionality and nutritional values for infant growth. It is important to understand the functional and biological properties of whey protein hydrolysates for their applications in infant formula systems. This review explored preparation methods of whey protein hydrolysates for infant formula-based applications. The effects of whey protein hydrolysate on the physicochemical and biological properties of hydrolyzed whey infant formulas were summarized. The influences of whey protein hydrolysates on the functional and nutritional properties of formulas from manufacturing to infant consumption were discussed. Whey protein hydrolysates are crucial components in the preparation of infant formula, tailored to meet the functional and nutritional demands of the product. The selection of enzyme types and hydrolysis parameters is decisive for obtaining "optimal" whey protein hydrolysates that match the intended characteristics. "Optimal" whey protein hydrolysates offer diverse functionalities, including solubility, emulsification and production stability to hydrolyzed whey infant formulas during manufacturing processes and formulations. They simultaneously promote protein digestibility, infant growth and other potential health benefits, including reduced allergenic potential, as supported by in vitro, in vivo and clinical trials. Overall, the precise selection of enzymes and hydrolysis parameters in the production of whey protein hydrolysates is crucial in achieving the desired characteristics and functional benefits for hydrolyzed whey infant formulas, making them critical in the development of infant nutrition products.


Asunto(s)
Fórmulas Infantiles , Hidrolisados de Proteína , Lactante , Humanos , Fórmulas Infantiles/química , Hidrolisados de Proteína/química , Suero Lácteo , Proteína de Suero de Leche/química , Alérgenos
6.
Food Res Int ; 181: 114083, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448094

RESUMEN

Malnutrition is considered one of the major public health problems worldwide and negatively affects the growth, development and learning of schoolchildren. This study developed and evaluated a fermented milk drink with added Umbu (Spondias tuberosa) pulp in the weight gain and renutrition of mice submitted to malnutrition by calorie restriction, and in malnourished children. The supplementation with this fermented milk drink contributed to an increase of 7.2 % in body weight, and 64.3 % in albumin, and a reduction of 35 % in cholesterol in malnourished mice. In humans, a group of nine malnourished children consumed a daily 200 mL serving of the milk drink (for 60 days). For humans, the fermented milk drink allowed an increase of 16.5 % in body weight, and 20.9 % in body mass index in malnourished children. In conclusion, fermented milk drink has a positive effect on the re-nutrition of malnourished mice and helps to improve the nutritional status of malnourished children.


Asunto(s)
Anacardiaceae , Desnutrición , Niño , Humanos , Animales , Ratones , Suero Lácteo , Leche , Estado Nutricional , Proteína de Suero de Leche , Aumento de Peso , Peso Corporal
7.
Food Res Int ; 181: 114063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448113

RESUMEN

The use of infant formulas (IFs) based on hydrolyzed cow's milk proteins to prevent cow's milk allergy (CMA) is highly debated. The risk of sensitization to milk proteins induced by IFs may be affected by the degree of hydrolysis (DH) as well as other physicochemical properties of the cow's milk-based protein hydrolysates within the IFs. The immunogenicity (specific IgG1 induction) and sensitizing capacity (specific IgE induction) of 30 whey- or casein-based hydrolysates with different physicochemical characteristics were compared using an intraperitoneal model of CMA in Brown Norway rats. In general, the whey-based hydrolysates demonstrated higher immunogenicity than casein-based hydrolysates, inducing higher levels of hydrolysate-specific and intact-specific IgG1. The immunogenicity of the hydrolysates was influenced by DH, peptide size distribution profile, peptide aggregation, nano-sized particle formation, and surface hydrophobicity. Yet, only the surface hydrophobicity was found to affect the sensitizing capacity of hydrolysates, as high hydrophobicity was associated with higher levels of specific IgE. The whey- and casein-based hydrolysates exhibited distinct immunological properties with highly diverse molecular composition and physicochemical properties which are not accounted for by measuring DH, which was a poor predictor of sensitizing capacity. Thus, future studies should consider and account for physicochemical characteristics when assessing the sensitizing capacity of cow's milk-based protein hydrolysates.


Asunto(s)
Hipersensibilidad a la Leche , Suero Lácteo , Humanos , Animales , Bovinos , Femenino , Lactante , Ratas , Caseínas , Hipersensibilidad a la Leche/prevención & control , Hidrólisis , Hidrolisados de Proteína , Proteína de Suero de Leche , Proteínas de la Leche , Inmunoglobulina G , Péptidos , Inmunoglobulina E
8.
Talanta ; 273: 125847, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452590

RESUMEN

This study investigates the contamination of cow milk with aluminum (Al) and its potential health implications, particularly for children. Cow milk samples were collected from both nonexposed and exposed areas in Sindh, based on the source of livestock drinking water (fresh canals and groundwater). An environmental friendly deep eutectic solvent (DES) was used with ultrasonic-assisted dispersive liquid-liquid microextraction (UDLLµE) to enrich trace amounts of Al in whey milk and water samples. The enriched samples were then analyzed using inductively coupled plasma optical emission spectrometry. Certified reference materials were employed to validate the methodology, and the experimental results exhibited acceptable conformity. The DES-based dispersive liquid-liquid microextraction method was environmental friendly, devoid of acids and oxidizing agents, and used safe and inexpensive components for routine trace metal analysis in diverse samples. The resulting data revealed that Al in whey milk samples was observed in the range of 31-45 %, corresponding to (160-270) µg L-1 and (700-1035) µg L-1 in nonexposed and exposed whole cow milk samples, respectively. Additionally, it was observed that milk boiling in Al utensil for 10-20 min enhanced the Al levels from 3 to 8% of its total contents in milk samples.


Asunto(s)
Microextracción en Fase Líquida , Leche , Niño , Bovinos , Animales , Humanos , Solventes/química , Leche/química , Suero Lácteo , Aluminio/análisis , Disolventes Eutécticos Profundos , Microextracción en Fase Líquida/métodos , Límite de Detección
9.
J Hazard Mater ; 469: 133992, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460262

RESUMEN

Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent anthropogenic chemicals that are widely distributed in the environment and pose significant risks to human health. Foam fractionation has emerged as a promising method to recover PFOS/PFOA from water. However, PFOS/PFOA concentrations in wastewater are often inadequate to generate stable foams due to their high critical micelle concentrations and the addition of a cosurfactant is necessary. In this study, we developed whey soy protein (WSP) as a green frother and collector derived from soybean meal (SBM), which is an abundant and cost-effective agro-industrial residue. WSP exhibited excellent foaming properties across a wide pH range and demonstrated strong collection capabilities that enhanced the recovery of PFOS/PFOA. The mechanism underlying this collection ability was elucidated through various methods, revealing the involvement of electrostatic attraction, hydrophobic interaction, and hydrogen bonding. Furthermore, we designed a double plate internal to improve the enrichment of PFOS/PFOA by approximately 2.3 times while reducing water recovery. Under suitable conditions (WSP concentration: 300 mg/L, pH: 6.0, air flowrate: 300 mL/min), we achieved high recovery percentages of 94-98% and enrichment ratios of 7.5-12.8 for PFOS/PFOA concentrations ranging from 5 to 20 mg/L. This foam fractionation process holds great promise for the treatment of PFOS/PFOA and other per- and polyfluoroalkyl substances.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Agua , Proteínas de Soja , Suero Lácteo/química , Proteína de Suero de Leche , Fluorocarburos/análisis , Caprilatos/análisis , Ácidos Alcanesulfónicos/análisis , Contaminantes Químicos del Agua/análisis
10.
Medicina (Kaunas) ; 60(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38541159

RESUMEN

Background and Objectives: Muscle atrophy occurs when protein degradation exceeds protein synthesis, resulting in imbalanced protein homeostasis, compromised muscle contraction, and a reduction in muscle mass. The incidence of muscle atrophy is increasingly recognized as a significant worldwide public health problem. The aim of the current study was to evaluate the effect of whey peptide (WP) on muscle atrophy induced by dexamethasone (DEX) in mice. Materials and Methods: C57BL/6 mice were divided into six groups, each consisting of nine individuals. WPs were orally administered to C57BL/6 mice for 6 weeks. DEX was administered for 5-6 weeks to induce muscle atrophy (intraperitoneal injection, i.p.). Results: Microcomputer tomography (CT) analysis confirmed that WP significantly increased calf muscle volume and surface area in mice with DEX-induced muscle atrophy, as evidenced by tissue staining. Furthermore, it increased the area of muscle fibers and facilitated greater collagen deposition. Moreover, WP significantly decreased the levels of serum biomarkers associated with muscle damage, kidney function, and inflammatory cytokines. WP increased p-mTOR and p-p70S6K levels through the IGF-1/PI3K/Akt pathway, while concurrently decreasing protein catabolism via the FOXO pathway. Furthermore, the expression of proteins associated with myocyte differentiation increased noticeably. Conclusions: These results confirm that WP reduces muscle atrophy by regulating muscle protein homeostasis. Additionally, it is believed that it helps to relieve muscle atrophy by regulating the expression of myocyte differentiation factors. Therefore, we propose that WP plays a significant role in preventing and treating muscle wasting by functioning as a supplement to counteract muscle atrophy.


Asunto(s)
Dexametasona , Suero Lácteo , Ratones , Animales , Dexametasona/efectos adversos , Suero Lácteo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Transducción de Señal/fisiología , Ratones Endogámicos C57BL , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Péptidos/efectos adversos
11.
Food Chem ; 448: 139119, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547703

RESUMEN

Buffalo colostrum is the initial mammary secretion after parturition, consisting of nutritional and bioactive components. In this study, we conducted a proteomic analysis of buffalo colostrum whey to identify bioactive proteins and peptides. A total of 107 differentially expressed proteins (DEPs) were identified in buffalo colostrum whey compared to those in mature milk. Gene Ontology analysis revealed that DEPs were primarily associated with immune response and tissue development. KEGG pathway enrichment suggested that colostrum actively enhances nascent immunity involved in interleukin and interferon signaling pathways. Furthermore, candidate antimicrobial peptides (AMPs) of whey protein hydrolysates from buffalo colostrum were characterized, which exhibits broad-spectrum activity against gram-positive and gram-negative pathogens. Overall, this study improves our understanding of protein variations in buffalo lactation, and contributes to the development of AMPs from buffalo colostrum.


Asunto(s)
Péptidos Antimicrobianos , Búfalos , Calostro , Leche , Proteómica , Proteína de Suero de Leche , Animales , Calostro/química , Calostro/metabolismo , Femenino , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/análisis , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/metabolismo , Leche/química , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/análisis , Suero Lácteo/química , Suero Lácteo/metabolismo
12.
Food Res Int ; 182: 114162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519186

RESUMEN

Whey is a by-product derived from cheese making. Despite being rich in nutrients, it is little used, it even represents a problem form the environment in Mexico. In this sense, it is important to know the meanings that are associated with this term, especially when it is intended to develop new products from this by-product. The objective of this work was to analyze the representation of the term whey in rural and urban populations through the Central core Theory. Additionally, the relationship between gender-place of residence with the evoked word is explored. Therefore, three hundred and sixty people (from rural and urban areas) were interviewed face to face in two areas in the western region of Mexico. Word association test was carried out, using "whey" as stimulus; the associated words were ordered according to their importance; the polarity index of each associated word was evaluated. The most frequently mentioned words were analyzed based on their frequency of mention and average importance to identify the conceptual structure of the concept representation. The results show and influence of the place of residence on the conceptual structure. Rural participants tend to generate more words with negative connotations, while the central elements of urban consumers are mainly related to dairy products. When comparing consumers by gender, rural and urban women associate "whey" with aspects of both the production process and dairy products. In the case of men, those from the urban zone, relate to aspects related to nutrition, dairy products and nutrients. In contrast, men from the rural area relate whey mainly to negative aspects such as pollution. The study confirms that there is a link between the place of residence and the conformation of the conceptual structure, where the gender-region relationship influences the definition of the term "whey".


Asunto(s)
Productos Lácteos , Suero Lácteo , Masculino , Humanos , Femenino , México , Población Urbana , Proteína de Suero de Leche/química
13.
Compr Rev Food Sci Food Saf ; 23(2): e13319, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506186

RESUMEN

Industrial waste management is critical to maintaining environmental sustainability. The dairy industry (DI), as one of the major consumers of freshwater, generates substantial whey dairy effluent, which is notably rich in organic matter and thus a significant pollutant. The effluent represents environmental risks due to its high biological and chemical oxygen demands. Today, stringent government regulations, environmental laws, and heightened consumer health awareness are compelling industries to responsibly manage and reuse whey waste. Therefore, this study investigates sustainable solutions for efficiently utilizing DI waste. Employing a systematic review approach, the research reveals that innovative technologies enable the creation of renewable, high-quality, value-added food products from dairy byproducts. These innovations offer promising sustainable waste management strategies for the dairy sector, aligning with economic interests. The main objectives of the study deal with, (a) assessing the environmental impact of dairy sector waste, (b) exploring the multifaceted nutritional and health benefits inherent in cheese whey, and (c) investigating diverse biotechnological approaches to fashion value-added, eco-friendly dairy whey-based products for potential integration into various food products, and thus fostering economic sustainability. Finally, the implications of this work span theoretical considerations, practical applications, and outline future research pathways crucial for advancing the sustainable management of dairy waste.


Asunto(s)
Industria Lechera , Suero Lácteo , Proteína de Suero de Leche , Productos Lácteos , Residuos Industriales
14.
J Agric Food Chem ; 72(11): 5898-5911, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38459945

RESUMEN

In view of potential future changes of German food legislation with regard to cheese product quality parameters, this study aimed to evaluate the quality of whey protein-enriched semihard cheese (WPEC). Model WPEC was produced in a pilot plant and on an industrial scale by adding defined amounts of high-heat (HH) milk to the cheese milk and comprehensively analyzed during cheese processing. The dry matter, total protein, pure protein, fat, and sodium chloride content of six-week ripened cheese samples were not significantly different (p < 0.05) when the technologically necessary heating of the curd was adapted to the amount of HH milk. However, the ripening, firmness, and melting behavior of WPEC was different compared to cheese without HH milk. During ripening, no formation of whey protein peptides was observed, but differences in the amount of some bitter peptides deriving from the casein fraction were found. Sensory data suggested a slightly more bitter taste perception by the panelists for the WPEC. Further technological adjustments are recommended to obtain marketable WPEC.


Asunto(s)
Queso , Animales , Queso/análisis , Proteína de Suero de Leche/química , Leche/química , Gusto , Péptidos/análisis , Manipulación de Alimentos , Suero Lácteo
15.
J Agric Food Chem ; 72(9): 4958-4976, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38381611

RESUMEN

Previously, we found that whey proteins form biomolecular coronas around titanium dioxide (TiO2) nanoparticles. Here, the gastrointestinal fate of whey protein-coated TiO2 nanoparticles and their interactions with gut microbiota were investigated. The antioxidant activity of protein-coated nanoparticles was enhanced after simulated digestion. The structure of the whey proteins was changed after they adsorbed to the surfaces of the TiO2 nanoparticles, which reduced their hydrolysis under simulated gastrointestinal conditions. The presence of protein coronas also regulated the impact of the TiO2 nanoparticles on colonic fermentation, including promoting the production of short-chain fatty acids. Bare TiO2 nanoparticles significantly increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria, but the presence of protein coronas alleviated this effect. In particular, the proportion of beneficial bacteria, such as Bacteroides and Bifidobacterium, was enhanced for the coated nanoparticles. Our results suggest that the formation of a whey protein corona around TiO2 nanoparticles may have beneficial effects on their behavior within the colon. This study provides valuable new insights into the potential impact of protein coronas on the gastrointestinal fate of inorganic nanoparticles.


Asunto(s)
Nanopartículas , Corona de Proteínas , Proteína de Suero de Leche/metabolismo , Suero Lácteo/metabolismo , Corona de Proteínas/metabolismo , Tracto Gastrointestinal/metabolismo , Nanopartículas/química , Bacterias/metabolismo , Titanio/química
16.
Int J Biol Macromol ; 264(Pt 1): 130404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417752

RESUMEN

Due to their organized structures, remarkable stiffness, and nice biocompatibility and biodegradability, amyloid fibrils serve as building blocks for versatile sustainable materials. Silver nanoparticles (AgNPs) are commonly used as the nano-catalysts for various electrochemical reactions. Given their large specific surface area and high surface energy, AgNPs exhibit high aggregation propensity, which hampers their electrocatalytic performance. Food protein wastes have been identified to be associated with climate change and environmental impacts, and a surplus of whey proteins in dairy industries causes high biological and chemical demands, and greenhouse gas emissions. This study is aimed at constructing sustainable electrode surface modifiers using AgNP-deposited whey protein amyloid fibrils (AgNP/WPI-AFs). AgNP/WPI-AFs were synthesized and characterized via spectroscopic techniques, electron microscopy, and X-ray diffraction. Next, the electrocatalytic performance of AgNP/WPI-AF modified electrode was assessed via para-nitrophenol (p-NP) reduction combined with various electrochemical analyses. Moreover, the reaction mechanism of p-NP electrocatalysis on the surface of AgNP/WPI-AF modified electrode was investigated. The detection range, limit of detection, sensitivity, and selectivity of the AgNP/WPI-AF modified electrode were evaluated accordingly. This work not only demonstrates an alternative for whey valorization but also highlights the feasibility of using amyloid-based hybrid materials as the electrode surface modifier for electrochemical sensing purposes.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Proteína de Suero de Leche , Plata/química , Amiloide , Suero Lácteo , Electrodos , Técnicas Electroquímicas/métodos
17.
Artículo en Inglés | MEDLINE | ID: mdl-38299783

RESUMEN

Agricultural waste valorisation provides a sustainable solution to waste management, and combining waste utilisation with commodity production allows for responsible production processes. Recombinant Aspergillus niger D15 strains expressing fungal endoglucanases (Trichoderma reesei eg1 and eg2 and Aspergillus carneus aceg) were evaluated for their ability to utilise lactose as a carbon source to determine whether dairy waste could be used as a feedstock for enzyme production. The recombinant A. niger D15[eg1]PyrG, D15[eg2]PyrG, and D15[aceg]PyrG strains produced maximum endoglucanase activities of 34, 54, and 34 U/mL, respectively, on lactose and 23, 27, and 22 U/mL, respectively, on whey. The A. niger D15[eg2]PyrG strain was used to optimise the whey medium. Maximum endoglucanase activity of 46 U/mL was produced on 10% whey medium containing 0.6% NaNO3. The results obtained indicate that dairy whey can be utilised as a feedstock for recombinant enzyme production. However, variations in enzyme activities were observed and require further investigation.


Asunto(s)
Aspergillus niger , Aspergillus , Celulasa , Aspergillus niger/genética , Suero Lácteo , Lactosa , Celulasa/genética
18.
Compr Rev Food Sci Food Saf ; 23(2): e13289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38343297

RESUMEN

Whey protein denaturation and aggregation have long been areas of research interest to the dairy industry, having significant implications for process performance and final product functionality and quality. As such, a significant number of analytical techniques have been developed or adapted to assess and characterize levels of whey protein denaturation and aggregation, to either maximize processing efficiency or create products with enhanced functionality (both technological and biological). This review aims to collate and critique these approaches based on their analytical principles and outline their application for the assessment of denaturation and aggregation. This review also provides insights into recent developments in process analytical technologies relating to whey protein denaturation and aggregation, whereby some of the analytical methods have been adapted to enable measurements in-line. Developments in this area will enable more live, in-process data to be generated, which will subsequently allow more adaptive processing, enabling improved product quality and processing efficiency. Along with the applicability of these techniques for the assessment of whey protein denaturation and aggregation, limitations are also presented to help assess the suitability of each analytical technique for specific areas of interest.


Asunto(s)
Suero Lácteo , Proteína de Suero de Leche , Desnaturalización Proteica , Concentración de Iones de Hidrógeno
19.
Artículo en Inglés | MEDLINE | ID: mdl-38319919

RESUMEN

In the category of sports supplements, whey protein powder is one of the popular supplements for muscle building applications. Therefore, verification of the sport supplements as authentic products has become a universal concern. This work aimed to propose vibrational spectroscopy including near infrared (NIR) and infrared (IR) as rapid and non-destructive testing tools for the detection and quantification of maltodextrin, milk powder and milk whey powder in whey protein supplements. Initially, principal component analysis was applied to data for pattern recognition and the results displayed a fine pattern of discrimination. Partial least square discrimination analysis (PLS-DA) and K-nearest neighbours (KNN) were exploited as supervised method modelling classification. This process was done in order to respond to two vital questions whether the sample is adulterated or not and what is the kind of adulteration. PLS-DA showed better classification results rather than KNN according to the figure of merits of the model. Partial least square regression (PLSR) was employed on pre-treated spectra to quantify the amount of adulteration in sport whey supplements. Eventually, it seems vibrational spectroscopy could be implemented as a simple, and low-cost analysis method for the detection and quantification of mentioned adulterants in whey protein supplements.


Asunto(s)
Contaminación de Alimentos , Suero Lácteo , Suero Lácteo/química , Proteína de Suero de Leche/análisis , Polvos , Contaminación de Alimentos/análisis , Análisis Espectral , Análisis de los Mínimos Cuadrados
20.
Chemosphere ; 353: 141558, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417486

RESUMEN

This study performed bench scale studies on anaerobic co-digestion of cheese whey and septage mixed with biochar (BC) as additive at various dosages (0.5 g, 1 g, 2 g and 4 g) and total solids (TS) concentrations (5%, 7.5%, 10%,12.5% and 15%). The experimental results revealed 29.58% increase in methane yield (486 ± 11.32 mL/gVS) with 27% reduction in lag phase time at 10% TS concentration and 50 g/L of BC loading. The mechanistic investigations revealed that BC improved process stability by virtue of its robust buffering capacity and mitigated ammonia inhibition. Statistical analysis indicates BC dosage had a more pronounced effect (P < 0.0001) compared to the impact of TS concentrations. Additionally, the results were modelled using Gompertz model (GM) and artificial neural network (ANN) algorithm, which revealed the outperformance of ANN over GM with MSE 17.96, R2 value 0.9942 and error 0.27%. These findings validated the practicality of utilizing a high dosage of BC in semi-solid anaerobic digestion conditions.


Asunto(s)
Carbón Orgánico , Queso , Suero Lácteo , Anaerobiosis , Metano , Reactores Biológicos , Redes Neurales de la Computación , Digestión , Biocombustibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...